
@,]

AD-A252 737
f% ELECTE

JUL6 1992UD

0021A002, Final Report 9 June 16, 1992

LOGICS AND MODELS FOR CONCURRENCY AND TYPE THEORY

Prepared by:

Jos6 Meseguer, Principal Scientist
Computer Science Laboratory

SRI Project 6729

Prepared for:

* 1 Office of Naval Research
800 North Quincy Street
Arlington, Virginia 22217-5000

"I! ' IAttn: Dr. Ralph Wachter, Code 1133
, Director, Computer Science Division

•; "Contract No. N0001 4-88-C-0618

Approved:-: 92-16639
Mark Moriconi, Director
Computer Science Laboratory II IIIII iIllI IIi
Donald L. Nielson, Vice President
Computing and Engineering Sciences Division



Acooioa __or
Statement A per telecon
Dr. Ralph Wachter ONR/Code 1133 Mc F-1
Arlington, VA 22217-5000 1 r.,

NWW 6/26/92

Avi' a2biIy Codes

. ... Vii aad/or -_
1 Introduction Dist I pCiai

Under Office of Naval Research Contract N00014-88-C-0618 (SRI Project
6729), SRI International completed the "Logics and Models for Concurrency|
and Type Theory" project which was carried out from 1 September 1988 to-

30 April 1992.
The goal was to contribute useful new concepts and results in two very ac-

tive areas of research within semantics of computation, namely concurrency
and type theory. The technical method of approach used logic and category

theory and aimed at a conceptual unification of concurrency and construc-

tive type theory. Section 2 summarizes the accomplishments attained under

this contract and explains the specific ways in which the research goals were

met.

Section 3 lists the researchers who participated in the project. The

references section lists all the papers written under the contract; copies of

the papers are attached to this report.

2 Accomplishments

Several topics were supported by the contract, and there are important

connections between these different topics. General logics, often in the par-

ticular form of categorical logics, form a common semantic framework for

all these investigations; they are discussed in Section 2.1. Work on concur-

rency models is discussed in Section 2.2. Rewriting logic, its role in unifying

models of concurrency, and the Maude language are discussed in Section 2.3.
The connections between linear logic and concurrency as well as models for

linear logic are discussed in Section 2.4. Sections 2.5, 2.6, and 2.7 cover
work on different aspects of type theory, namely models of polymorphism,

constructors and selectors, and higher-order subtypes.

2.1 General Logics

The connections between logic and computer science are growing rapidly
and are becoming deeper. Besides theorem proving, logic programming,
and program specification and verification, other areas showing a fascinat-

ing mutual interaction with logic include type theory, concurrency, artificial

intelligence, complexity theory, databases, operational semantics, and com-

piler techniques. The concepts presented in the paper [11] by Meseguer are
motivated by the need to understand and relate the many different logics

currently being used in computer science, and by the related need for new

approaches to the rigorous design of computer systems. Logic programming
is of course one of the areas where logic and computer science interact most

strongly. The attempt to better understand the nature of this interaction,

as well as its future prospects, motivates the following basic question:



Project 6729 Final Report June 16, 1992 2

What is Logic Programming?

The paper [11] tries to make precise the meaning of this question, and to
answer it in terms of general axioms that apply to a wide variety of different
logics. In doing so, we axe inevitably led to ask the more fundamental
question:

What is a Logic?

That is, how should general logics be axiomatized? This is because an
axiomatic notion of logic programming must necessarily rest on an axiomatic
notion of logic itself. Most of the paper [11] is devoted to the second question.
With an axiomatic notion of logic already in place, it then answers the first.

Beyond their application to logic programming, the axioms for general
logics given in [11] are sufficiently general to have wide applicability within
logic and computer science. Thus, the work reported in [11] has goals that
are in full agreement with those of J.A. Goguen and R. Burstall's theory
of institutions; however, it addresses proof-theoretic aspects not addressed
by institutions. In fact, institutions can be viewed as the model-theoretic
component of the theory developed in [11]. The main new contributions
include a general axiomatic theory of entailment and proof, to cover the
proof-theoretic aspects of logic and the many proof-theoretic uses of logic in
computer science; they also include new notions of mappings that interpret
one logic (or proof calculus) in another, an axiomatic study of categorical
logics, and the axioms for logic programming.

In the paper [18], the above-mentioned theory of general logics and its
associated axiomatic notion of "logic programming language" are used for
defining multiparadigm logical languages. The problem of designing mul-
tiparadigm logic programming languages that overcome the present limita-
tions faced by relational and functional logical languages in dealing with
state change and reactive systems is approached by a method based on the
use of mappings between logics to guide the search for a logic in which the
desired multiparadigm integration can be attained. Following this method,
rewriting logic is proposed as a logic in which the functional, relational, and
concurrent object-oriented paradigms can be unified in a simple and rigorous
way. Two languages based on this logic, Maude and MaudeLog, are briefly
described and illustrated with examples. Rewriting logic and the Maude
language are further discussed in Section 2.3

As already mentioned, categorical logics appear as the semantic basis for
many of the investigations in this contract. In particular, they are essential
for the topics discussed in Sections 2.3, 2.4, 2.5, and 2.7.

2.2 Concurrency Models

Petri nets are widely used to model concurrent systems. However, their
composition and abstraction mechanisms are inadequate. The paper [20] by



Project 6729 Final Report June 16, 1992 3

Meseguer and Montanari solves this problem in a satisfactory way. It views
place/transition (P/T) Petri nets as ordinary, directed graphs equipped with
two algebraic operations corresponding to parallel and sequential composi-
tion of transitions. A distributive law between the two operations captures a
basic fact about concurrency. New morphisms are defined, mapping single,
atomic transitions into whole computations, thus relating system descrip-
tions at different levels of abstraction. Categories equipped with produetb
and coproducts (corresponding to parallel and nondeterministic composi-
tions) are introduced for Petri nets with and without initial markings. This
approach also yields function spaces and new interpretations of duality and
invariants. These results provide a formal basis for expressing the semantics
of concurrent languages in terms of Petri nets. They also provide a new
understanding of concurrency in terms of algebraic structures over graphs
and categories that should apply to other models and contribute to the
conceptual unification of concurrency.

Descriptions of concurrent behaviors in terms of partial orderings (called
nonsequential processes or simply processes in Petri net theory) have been
recognized as superior when information about distribution in space, about
causal dependency, or about fairness must be provided. However, at least
in the general case of place/transition nets, the proposed models lack a
suitable, general notion of sequential composition. In the paper [3] by
Degano, Meseguer and Montanari, a new algebraic axiomatization is pro-
posed, where, given a net N, a term algebra P[N] with two operations of
parallel and sequential composition is defined. The congruence classes gen-
erated by a few simple axioms are proved isomorphic to a slight refinement
of classical processes. Actually, P[N] is a symmetric monoidal category,
parallel composition is the monoidal operation on morphisms, and sequen-
tial composition is morphism composition. Besides P[N], we introduce a
category SIN] containing the classical occurrence and step sequences. The
term algebras of P(N] and of S[N] are in general incomparable, and thus
we introduce two more categories K[N] and T[N] providing a most concrete
and a most abstract extremum, respectively. A simple axiom expressing the
functoriality of parallel composition allows us to map K[N] to P[N] and
S[N] to T[N], while commutativity of parallel composition maps K[N] to
S[N] and P[N] to T[N]. Morphisms of K[N] constitute a new notion of
concrete net computation, while the strictly symmetric monoidal category
T[N] was introduced previously in [20] as a new algebraic foundation for
P/T nets. In the paper [3], the morphisms of P[N] are proved isomorphic
to the processes recently defined in terms of the "swap" transformation by
Best and Devillers. Thus, the diamond of the four categories gives a full
account in algebraic terms of the relations between interleaving and partial
ordering observations of P/T net computations. The paper [4] by Degano,
Meseguer, and Montanari provides a full account of previous work by the
same authors in [3] on the algebraic axiomatization of concurrent behaviors.



Project 6729 Final Report June 16, 1992 4

Although place/transition Petri nets axe among the most widely used
models of concurrency, they still lack a satisfactory semantics: on the one
hand the "token game" is too intensional, even in its more abstract inter-
pretations in term of nonsequential processes and monoidal categories; on
the other hand, Winskel's basic unfolding construction, which provides a
coreflection between nets and finitary prime algebraic domains, works only
for safe nets. The paper [21] by Meseguer, Montanaxi, and Sassone improves
this situation by extending Winskel's result to P/T nets. The work begins
defining a rather general category PTNets of P/T nets; then, a category
DecOcc of decorated (nondeterministic) occurrence nets is introduced and
adjunctions between PTNets and DecOcc and between DecOcc and Occ,
the category of occurrence nets, are defined. The role of DecOcc is to pro-
vide natural unfoldings for P/T nets, that is, acyclic safe nets where a notion
of family is used for relating multiple instances of the same place. The un-
folding functor from PTNets to Occ reduces to Winskel's when restricted
to safe nets, while the standard corefiection between Occ and Dom, the
category of finitary prime algebraic domains, when composed with the un-
folding functor above, determines a chain of adjunctions between PTNets
and Dom.

An additional development also related to the partial order or "true
concurrency" approach to concurrency is the far-reaching generalization of
partially ordered computations (which are based on the very simple tem-
poral structure of precedence of one event by another) to computations
endowed with much richer temporal structures such as real time, interval
time, or probabilistic time that is given in the paper [1] by Casley, Crew,
Meseguer, and Pratt. The framework is indeed very general; it uses a deep
category-theoretic insight of F.W. Lawvere realizing that enriched categories
over a symmetric monoidal category are generalized metric spaces. It is pre-
cisely by using this insight that widely different temporal structures can
be studied within a common framework, and that basic constructions for
concurrent computations can in fact be made independent of the particular
temporal structure chosen. In this way, the relevant notion of time can be
made into a parameter of the basic constructions, and the different levels
of description (corresponding to different notions of time) can be system-
atically related. If only an order relation between events is relevant, we
have the special case of pomset computations, but if, for example, timing
is important, duration constraints given by real numbers can be introduced
in an abstract description of the computation. The relevant mathematical
structure is that of a V-category that essentially' formalizes, for an appro-
priate choice of time domain V-where the time domain V is formalized as
a monoidal category-the desired general notion of concurrent computation.

1The situation is actually somewhat more complicated, due to a labeling of the events
contained in the computation that is typically added and that requires some additional
structure.



Project 6729 Final Report June 16, 1992 5

The paper [2] by Casley, Crew, Meseguer, and Pratt is the final version of
the above-mentioned work by the same authors.

2.3 Rewriting Logic and the Unification of Concurrency
Models

The main goal of the paper [15] by Meseguer is to propose a general and
precise answer to the question:

What is a concurrent system?

It seems fair to say that this question has not yet received a satisfactory
answer, and that the resulting situation is one of conceptual fragmentation
within the field of concurrency. A related problem is the integration of con-
current programming with other programming paradigms, such as functional
and object-oriented programming. Integration attempts typically graft an
existing concurrency model on top of an existing language, but such ad hoc
combinations often lead to monstrous deformities that are extremely diffi-
cult to understand. Instead, the paper proposes a semantic integration of
those paradigms based on a common logic and model theory.

The logic, called rewriting logic, is implicit in term rewriting systems but
has passed for the most part unnoticed, due to our overwhelming tendency
to associate term rewriting with equational logic. Its proof theory exactly
corresponds to (truly) concurrent computation, and the model theory pro-
posed for it in this paper provides the general concept of concurrent system
that we are seeking.

The paper also proposes rewrite rules as a very high-level language to
program concurrent systems. Specifically, a language design based on rewrit-
ing logic is presented containing a functional sublanguage entirely similar to
OBJ3 as well as more general system modules, and also object-oriented mod-
ules that provide notational convenience for object-oriented applications but
are reducible to system modules [14]. The language's semantics is directly
based on the model theory of rewriting logic and yields the desired seman-
tic integration of concurrency with functional and object-oriented program-
ming.

The resulting notion of concurrent system is indeed very general and spe-
cializes to a wide variety of existing notions in a very natural way, including
labeled transition systems, Petri nets, concurrent object-oriented program-
ming, and several others. Such specializations, as well as the extension of
the ideas to the case of conditional rewrite rules, are studied and discussed
in much greater detail in the technical report [16].

The papers [17, 13] develop rewriting logic as a concurrent model of
computation supporting a very general style of declarative programming.
Rewriting with conditional rewrite rules modulo a set E of structural ax-
ioms provides a general framework for unifying a wide variety of models of



Project 6729 Final Report June 16, 1992 6

concurrency including Petri nets, CCS, Actors, concurrent object-oriented
programming, the UNITY model of computation, and parallel functional
programming. Concurrent rewriting coincides with logical deduction in con-
ditional rewriting logic, a logic of actions whose models are concurrent sys-
tems. This logic is sound and complete and has initial models. In addition
to general models interpreted as concurrent systems that provide a more op-
erational style of semantics, more restricted semantics with an increasingly
denuiational flavor such as preorder, poset, cpo, and sAaudard algebraic
models appear as special cases of the model theory. This permits dealing
with operational and denotational issues within the same model theory and
logic. A programming language called Maude whose modules are rewriting
logic theories is defined and given denotational and operational semantics.
Maude provides a simple unification of concurrent programming with func-
tional and object-oriented programming and supports high-level declarative
programming of concurrent systems.

Object-oriented Concurrency

Despite the growing interest in object-oriented programming in general and
object-based concurrency in particular, many unresolved research issues re-
main and it seems important to seek a simple and general semantic basis on
which rigorous progress in this subject can be based. The papers [14, 17]
contain a specific proposal for a semantic basis that could serve these pur-
poses. They use rewriting logic to provide a simple and general semantics
for object-oriented concurrent systems. Object-based concurrent compu-
tation corresponds in this model to logical deduction performed by concur-
rent rewriting modulo structural axioms of associativity, commutativity, and
identity that capture abstractly the essential aspects of communication in
a distributed object-oriented configuration made up of concurrent objects
and messages. Thanks to this axiomatization, it becomes possible to study
the behavior of concurrent objects by formal methods in a logic intrinsic to
their computation. The relationship with Actors and with other models of
concurrent computation is also discussed. The Maude language embodies
these ideas and serves as a vehicle to illustrate the basic concepts by means
of examples. Maude has three types of modules: functionl modules (OBJ3
can be viewed as Maude's functional sublanguage, and therefore these are
essentially OBJ3 programs); system modules, which denote general concur-
rent systems; and object-oriented modules, which denote concurrent object-
oriented systems. From the mathematical point of view, object-oriented
modules are reducible to system modules, but they have a special syntax to
support object-oriented design.



Project 6729 Final Report June 16, 1992 7

Parallel Programming in Maude

The paper [22] by Meseguer and Winkler explores the parallel programming
and wide spectrum aspects of Maude, which, as already mentioned, is a
declarative parallel programming language based on rewriting logic. Paral-
lelism in Maude is implicit; it is based on the intrinsically parallel nature of
logical deduction in rewriting logic. Maude unifies functional programming,
concurrent object-oriented programming, and general concurrent systems
programming within a single logic. Functional modules form a sublanguage
essentially identical to the OBJ language, and object-oriented modules pro-
vide convenient syntax for object-oriented applications, but are translat-
able into more general system modules. Maude is a wide-spectrum language
that integrates nonexecutable specifications, executable specifications for
rapid prototyping, and machine-independent, efficiently implementable par-
allel code written in a sublanguage called Simple Maude. Simple Maude's
machine independence-due to the flexibility and generality of its logical
model of concurrent computation-makes it a good candidate for implemen-
tations in MIMD, SIMD, and MIMD/SIMD architectures. Simple Maude
also supports multilingual extensions, allowing reuse and parallelization of
conventional code that can be incorporated in "black box" modules.

2.4 Linear Logic and Concurrency

Linear logic has been recently introduced by Girard as a logic of actions
that seems well suited for concurrent computation. In the papers [5, 9] by
Marti-Oliet and Meseguer, a systematic correspondence between Petri nets,
linear logic theories, and linear categories is established. Such a correspon-
dence sheds new light on the relationships between linear logic and concur-

rency, and on how both areas are related to category theory. Categories
are here viewed as concurrent systems whose objects are states, and whose
morphisms are transitions. This is an instance of the Lambek-Lawvere cor-
respondence between logic and category theory that cannot be expressed
within the more restricted framework of the Curry-Howard correspondence.

Marti-Oliet and Meseguer gave a new algebraic axiomatization of linear
logic models in [8], leading to substantial simplifications in the final version
of [5]. The new axioms directly reflect at the model-theoretic level the de
Morgan duality exhibited by linear logic, and are considerably simpler than
previous axioms. Several equationally defined classes of models have been
studied. One such class suggests a new variant of linear logic, called can-
cellative linear logic, in which it is always possible to cancel a proposition
(viewed as a resource) and its negation (viewed as a debt.) This provides a
semantics for a generalization of the usual token game on Petri nets, called
financial game. Poset models, called Girard algebras, are also defined equa-
tionally; they generalize for linear logic the Boolean algebras of classical
logic, and contain the quantale models as a special case. The proposed ax-



Project 6729 Final Report June 16, 1992 8

iomatization also provides a simple set of categorical combinators for linear
logic, extending those previously proposed by LWfont.

The categorical foundations of this new axiomatization of linear logic
models were the subject of a separate study by Marti-Oliet and Meseguer
in [6]. A key concept is that of a dualizing object in a closed monoidal
category. This notion is important for the categorical semantics of linear
logic, where dualization corresponds to negation, and for the fields of linear
algebra and topological vector spaces, where dualities of this form are sys-
tematically exploited. The paper [6] develops an axiomatic theory of duality
based on the notion of a dualizing object, discusses a variety of examples,
and studies the important case in which, in addition, there is a natural iso-
morphism between the functor corresponding to the connective "par" and
the tensor product functor. The paper also contains a detailed comparison
between the notion of a category with a dualizing object and Barr's notion
of *-autonomous category, and concludes that dualizing objects provide a
better axiomatic basis for the treatment of duality.

The paper [10] surveys recent work on the applications of linear logic
to concurrency, with special emphasis on Petri nets and on the use of cat-
egorical models. In particular, it presents a synthesis of previous work by
Marti-Oliet and Meseguer on the systematic correspondence between Petri
nets, linear logic theories, and linear categories, and explain its relationships
to work by many other authors. Throughout, the computational interpreta-
tion of the linear logic connectives is discussed and the ideas are illustrated
with examples.

Categories play an important role in this survey. On the one hand, from
a computational perspective, they are interpreted as concurrent systems
whose objects are states, and whose morphisms are transitions; on the other
hand, when a model-theoretic perspective is adopted, they provide a very
flexible conceptual framework within which the relationships among quite
different models already proposed for linear logic can be better understood;
this framework also srggests the study of new models and an axiomatic
treatment of classes of models. The categorical semantics for linear logic is
based on dualizing objects and permits a very simple presentation of ideas
requiring a more complicated treatment in the language of *-autonomous
categories.

The survey is based on the previous paper [9], which has been greatly
extended in several ways. First, a detailed comparison between the-concepts
of category with a dualizing object and Barr's *-autonomous category has
been added.

Second, the basic categorical context in which the semantics of linear
logic should be discussed is that of a closed symmetric monoidal category 2.

2 For noncommutative linear logic, the broader context of closed nonsymmetric
monoidal categories in the style of Lambek should be adopted; this paper concentrates
on the symmetric case. It is also possible to give the notion of a dualizing object in the



Project 6729 Final Report June 16, 1992 9

Developing the work reported in this paper has presented the difficulty of not
having an easy source of reference, suitable for computer scientists, for basic
concepts and properties about closed (symmetric monoidal) categories, al-
though the basic reference still remains the original monograph of Eilenberg
and Kelly. Therefore, the paper includes a fully self-contained exposition of
closed symmetric monoidal categories in an appendix. The survey also con-
tains results on equationally defined classes of models for linear logic that
previously appeared in [8].

Third, comparisons with the work done in this area by several researchers
in the time elapsed since the first version of [9] was written are included.
As already mentioned, the survey focuses on the relationship between lin-
ear logic and concurrency theory with special emphasis on Petri net theory,
without trying to cover other areas. However, the concluding remarks dis-
cuss various other areas of application and suggest some relevant references
for those other areas to the interested reader.

2.5 Relating Models of Polymorphism

To meet the software crisis, programming language design strives for princi-
ples and concepts that support increasingly higher levels of code reuse. Of
particular importance are techniques that allow the development of com-
plex modules by combining preexisting ones in a systematic way. We can
conceive of such combinations as providing an algebra of modules, that mir-
rors at a very high level the low-level algebraic character of, say, arithmetic
expressions. Modules themselves are the values, and the analogue role of
operators such as addition or multiplication is played by generic modules
that take one or more modules as arguments and yield a complex module as
a result. This can be accomplished in a variety of ways, based on differcnt
logics. For example, in the context of the first-order functional language
OBJ, generic modules are understood as algebraic theories having specified
parameter subtheories, and a very rich algebra of "module expressions" is
obtained by "putting theories together" as in the language Clear. In this
way, first-order generic modules provide higher-order programming capabil-
ities. This paper is concerned with the alternative, explicitly higher-order
approach pioneered by John Reynolds, whose logical aspects were indepen-
dently investigated for other purposes by the logician J.-Y. Girard. This
approach is known as the second-order polymorphic lambda calculus (ab-
breviated A2). In it, generic modules appear as polymorphic functions that
take types as arguments. This calculus plays a central role in higher-order
functional programming, and many other type theories can be viewed as
extensions of it.

general case of closed categories, without a tensor product; from a proof-theoretic point
of view, this could be useful for the study of fragments of linear logic that include the --o
connective but not the O connective.



Project 6729 Final Report June 16, 1992 10

Many different notions of model have been proposed for A2, and it seems
fair to say that there is as yet no final agreement on the matter, and that
the relationships between the different models have not been sufficiently
clarified. This is an unsatisfactory situation for a topic of great importance.
The paper [12] by Meseguer presents some new ideas and results that help
in gaining a more unified view of the semantics of polymorphism and in
better understanding the relationships between different approaches. This is
accomplished by establishing semantic relationships at three different levels:

1. At the level of models, by relating models by means of homomor-
phisms. In particular, a new initial model semantics for polymorphism
is given for the basic calculus and for several different extensions to
richer calculi.

2. At the level of different notions of model, by relating their semantics.
Technically, this takes the form of functors among different categories
of models.

3. At the level of type theories, by relating the second-order poly-
morphic lambda calculus to its natural extensions, when fixpoints or
Type:Type are added, and also to Martin-L6f type theory (abbreviated
All). This takes the form of a map between logics that either brings
each A2 theory into an appropriate extension of A2, or translates it
into a corresponding theory in Al.

Besides establishing such relationships, the work reported in [12] tries
to recover the original intuition of a model of A2 as a universe, an intuition
that Reynolds has shown cannot be maintained within classical set theory,
and that is lost or obscured in more esoteric notions of model. However,
by adopting the constructive notion of set advocated by Per Martin-Lf, all
foundational contradictions disappear and polymorphism is intuitionistically
set theoretic. In this way, the naive notion of a universe model can be
maintained, and a general categorical semantics can be developed. Also, the
notion extends very nicely to richer calculi that add fixpoints or a type of all
types to A2. Even though some of those richer calculi are not set theoretic
(not even intuitionistically), they can be given a categorical, initial model,
semantics in a context generalizing that of the basic calculus.

2.6 Subtypes, Constructors and Selectors

Structured data are generally composed from constituent parts by construc-
tors and decomposed by selectors. In the paper [19] (an extensively revised
and improved new version of an earlier conference paper) Meseguer and

Goguen show that the usual many-sorted algebra approach to abstract data
types cannot capture this simple intuition in a satisfactory way. They also
show that order-sorted algebra does solve this problem, and many others



Project 6729 Final Report June 16, 1992 11

concerning partially defined, ill-defined and erroneous expressions, in a sim-
ple and natural way. In particular, it is shown how order-sorted algebra
supports an elegant solution to the problems of multiple representations
and coercions. The essence of order-sorted algebra is that sorts have sub-
sorts, whose semantic interpretation is the subset relation on the carriers of
algebras.

2.7 Higher-order Subtypes

The failure to make explicit two different notions of subtype, a subtype as
inclusion notion originally proposed by Goguen and a subtype as implicit
conversion notion originally proposed by Reynolds, leads to unsatisfactory
situations in present approaches to subtyping. In fact, these two lines of work
have had very little mutual interaction, and-with a few exceptions-almost
nothing has been done to compare their relative strengths and weaknesses.
We are convinced that much can be gained, by way of mutual enrichment,
from such a comparison, and the paper [7] by Mati-Oliet and Meseguer
should be seen as a step in this direction. We argue that choosing either
notion at the expense of the other would be mistaken and limiting, and
propose a framework in which tivo subtype relations r < r' (inclusion) and
r <: r' (implicit conversion) are distinguished and integrated.

For example, one of the nicest features of the subtype as inclusion notion
is that it is completely safe to move data and perform operations up and
down the subtype hierarchy, so that for all purposes we can ignore what
type we are at. This subtype notion is probably the most natural and the
most widely held, and agrees perfectly well with traditional practice and
notation in mathematics, where we can for example add the number 3 to
the complex expression (-i) * i and then evaluate the whole expression to
the natural number 4, or we can instead first evaluate (-i) * i to 1 and then
add the natural numbers 3 and 1 to get 4 as a result. This safety in moving
data up and down is guaranteed by the following "no loss of information"
axiom: if r < r ' ,

VX, Y:T X,. =. 4-* X =''Y

which is typically implicit in treatments such as order-sorted algebra, where
the equality relation is defined independently of particular typings.

By contrast, such safety is not possible in the implicit conversion ap-
proach, for which the above axiom fails even in the case where the subtype
relations on basic types are all inclusions. This can be illustrated by the
rule for function spaces

w<T P5 P'(I 'p) (r :, P)

originally due to Reynolds, which is typical of higher-order approaches to
subtyping.



Project 6729 Final Report June 16, 1992 12

The main point to emphasize is that two quite different semantic intu-
itions are being conflated under the term "subtype," namely, the inclusion
and the implicit conversion notions. We think that it would be a serious mis-
take to think that one has to choose one of these two notions at the expense
of the other; actually, either choice would have undesirable consequences.
For example, the nice preservation of information properties of the inclusion
notion and the associated intuitions and ease in manipulating data would
be lost if we side with implicit conversions; but insisting on inclusions as the
only relevant notion would also be undesirable, since we would lose the nice
ability supported by the rule (=:) of passing as arguments functions having
a bigger domain of definition than strictly required.

Most of the paper [7] is devoted to extending the first-order theory of
subtypes as inclusions already developed in work on order-sorted algebra by
Goguen and Meseguer to a higher-order context; this involves providing a
higher-order equational logic for (inclusive) subtypes, a categorical semantics
for such a logic that is complete and has initial models, and a proof that this
higher-order logic is a conservative extension of its first-order counterpart.
We then give axioms that integrate the < and <: relations in a unified
categorical semantics. Besides enjoying the benefits provided by each of the
notions without their respective limitations, our framework supports rules
for structural subtyping that are more informative and can discriminate
between inclusions and implicit conversions.

3 Personnel

The project was led by Dr. Jos6 Meseguer. The following researchers have
also worked on the project; for those who were visitors, their permanent
affiliation is given. Dr. Martf-Oliet finished his doctorate under the supervi-
sion of Dr. Meseguer, thanks to the funding of this project. Mr. Sassone and
Ms. Cerioli are graduate students whose doctoral thesis work will include
research also funded under this project.

" Mr. Timothy Winkler

* Dr. Narciso Martf-Oliet

* Prof. Ugo Montanari, University of Pisa, Italy

" Prof. Pierpaolo Degano, University of Parma, Italy

" !,.r. Vladimiro Sassone, Unit Aity of Pisa, Italy

" Ms. Maura Cerioli, University of Genova, Italy



Project 6729 Final Report June 16, 1992 13

References

[1] 1.oss Casley, Roger Crew, Jos6 Meseguer, and Vaughan Pratt. Temporal
structures. In D.H. Pitt et al., editor, Category Theory and Computer
Science, pages 21-51. Springer LNCS, Vol. 389, 1989. Extended version
to appear in Mathematical Structures in Computer Science.

[2] Ross Cassley, Roger Crew, Jose Meseguer, and Vaughan Pratt. Tempo-
ral structures. J. Math. Structures in Computer Science, 1(2):179-213,
1991.

[3] P. Degano, J. Meseguer, and U. Montanai. Axiomatizing net compu-
tations and processes. In Proc. LICS'89, pages 175-185. IEEE, 1989.

[4] P. Degano, J. Meseguer, and U. Montanaxi. Axiomatizing the algebra
of net computations and processes. Technical Report SRI-CSL-90-12,
SRI International, Computer Science Laboratory, November 1990. Sub-
mitted for publication.

[5] Narciso Marti-Oliet and Jos6 Meseguer. From Petri nets to linear logic.
In D.H. Pitt et al., editor, Category Theory and Computer Science,
pages 313-340. Springer LNCS 389, 1989. Final version in Mathematical
Structures in Computer Science, 1:69-101, 1991.

[6] Narciso Maxti-Oliet and Jos6 Meseguer. Duality in closed and linear
categories. Technical Report SRI-CSL-90-01, SRI International, Com-
puter Science Laboratory, Februaxy 1990.

[7] Narciso Marti-Oliet and Jos6 Meseguer. Inclusions and subtypes. Tech-
nical Report SRI-CSL-90-16, SRI International, Computer Science Lab-
oratory, December 1990. Submitted for publication.

[8] Narciso Marti-Oliet and Jos6 Meseguer. An algebraic axiomatization
of linear logic models. In G.M. Reed, A.W. Roscoe, and R. Wachter,
editors, Topology and Category Theory in Computer Science, pages 335-
355. Oxford University Press, 1991. Also Technical Report SRI-CSL-89-
11, SRI International, Computer Science Laboratory, December 1989.

[9] Narciso Marti-Oliet and Jos6 Meseguer. From Petri nets to linear logic.
Math. Struct. in Comp. Sci., 1:69-101, 1991.

[10] Narciso Martf-Oliet and Jose Meseguer. From Petri nets to linear logic
through categories: a survey. Intl. J. of Foundations of Comp. Sci.,
2(4):297-399, 1991.

[11] J. Meseguer. General logics. In H.-D. Ebbinghaus et al., editor, Logic
Colloquium'87, pages 275-329. North-Holland, 1989.



Project 6729 Final Report June 16, 1992 14

[121 J. Meseguer. Relating Models of Polymorphism. In Proc. POPL'89,
pages 228-241. ACM, 1989.

[13] Jos6 Meseguer. Conditional rewriting logic: deduction, models and con-
currency. In S. Kaplan and M. Okada (eds.) Proc. CTRS'90, Montreal,
Canada, 1990, Springer LNCS 516, pp. 64-91, 1991.

[14] Jos6 Meseguer. A logical theory of concurrent objects. In ECOOP-
OOPSLA'90 Conference on Object-Oriented Programming, Ottawa,
Canada, October 1990, pages 101-115. ACM, 1990.

[15] Jos6 Meseguer. Rewriting as a unified model of concurrency. In Pro-
ceedings of the Concur'90 Conference, Amsterdam, August 1990, pages
384-400. Springer LNCS 458, 1990.

[16] Jos6 Meseguer. Rewriting as a unified model of concurrency. Technical
Report SRI-CSL-90-02, SRI International, Computer Science Labora-
tory, February 1990. Revised June 1990.

[17] Jos6 Meseguer. Conditional rewriting logic as a unified model of con-
currency. Theoretical Computer Science, 96(1):73-155, 1992. Also, SRI
International, Computer Science Laboratory technical report SRI-CSL-
91-05, February, 1991.

[18] Jos6 Meseguer. Multiparadigm logic programming. To appear in Proc.
3rd Intl. Conf. on Algebraic and Logic Programming, Springer LNCS,
1992.

[19] Jose Meseguer and Joseph Goguen. Order-sorted algebra solves the
constructor-selector, multiple representation and coercion problems.
Technical Report SRI-CSL-90-06, SRI International, Computer Science
Laboratory, June 1990. To appear in Information and Computation.

[20] Jos6 Meseguer and Ugo Montanari. Petri nets are monoids. Information
and Computation, 88:105-155, 1990. Appeared as SRI Tech Report
SRI-CSL-88-3, January 1988.

[21] Jos6 Meseguer, Ugo Montanari, and Vladimiro Sassone. On the se-
mantics of Petri nets. To appear in Proc. Concur'92, Springer LNCS,
1992.

[22] Jose Meseguer and Timothy Winkler. Parallel Programming in Maude.
In J.-P. Banitre and D. Le Metayer, editors, Research Directions in
High-level Parallel Programming Languages, pages 253-293. Springer-
Verlag, 1992. LNCS, Volume 574; also, SRI Technical Report SRI-CSL-
91-08, November 1991.


